
Example 1 (ChatGPT-4o): migration test no. 1

Firstly, it stands out that the int type has been
selected for the counter variable. In COBOL, this is
a PIC 9, i. e. an unsigned single-digit integer with
the value range {𝑥𝑥: 0 ≤ 𝑥𝑥 ≤ 9}. The Java int type, on
the other hand, has a value range of
{𝑥𝑥: − 2.147.483.648 ≤ 𝑥𝑥 ≤ 2.147.483.647}. Accordingly,
after initialisation with 42, the variable in Java
contains the value 42, whereas in COBOL it only
contains 2. The same applies to the assignment of
84 further down.

The type for the month names (PIC X(8)in
COBOL) is also incorrectly selected with String in
Java. In COBOL, the length of the month name is
always exactly 8 characters, whereas in Java it can
be shorter or (e. g. in the case of September)
longer. As a general rule, native Java types should
not be used for migrated data elements, as
COBOL data has different properties than Java
data. Replicating the COBOL types with Java
classes is the better choice here.

In the Java programme, the my-struct and
monats-liste overlay is achieved by separate
assignments to monate[0] and monate[1].
However, this does not take into account that the
MOVE “Monat 01Monat02“ TO my-struct COBOL
command changes the entire structure. The
values of the mar to dez fields are filled with
spaces. This does not happen in Java, which is why
the last output line is Maerz and not empty, as is
the case with the COBOL programme.

Example 1 (ChatGPT-4o): migration test no. 2

As far as the types and missing fill up of spaces
for the Maerz to Dezember fields are concerned,
the same mistakes are being made here as in the
first translation.

This time, however, the my-struct and monats-
liste overlay is not taken into account at all.
Therefore, in addition to the last output Maerz,
the penultimate output is also incorrect.

